Phenotypic Plasticity in Bigheaded Carp Life History Traits

Reuben Goforth\(^1\)*, Alison Coulter\(^1\), Doug Keller\(^2\), Jon Amberg\(^3\), and Elizabeth Bailey\(^1\)

\(^1\)Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN
\(^2\)Indiana Department of Natural Resources, Indianapolis, IN
\(^3\)Upper Midwest Environmental Sciences Center, US Geological Survey, LaCrosse, WI

*E-mail: rgoforth@purdue.edu
Voice: 269-967-7620
Quick Background

• Bigheaded carp (*Hypophthalmichthys* spp) invasion history well-known (started in Arkansas 1972 & 1973)

• Invasion of Great Lakes Basin considered imminent (Jerde et al. 2011)
 • Several fish already captured in Great Lakes & adjacent waters

• Substantial economic & ecological consequences of invasion & establishment very likely (Cudmore et al. 2012)

• Considerable effort expended to prevent additional introductions that could lead to establishment and wider distribution (e.g., electric barriers)
Assessing/Predicting Threats

- Prevent new introductions; halt, limit, slow dispersal
- Multiple efforts based on:
 - Life history, habitat requirements, invasion histories, & human uses (Kolar & Lodge 2002; Cudmore et al. 2012)
 - Ecological niche & habitat suitability models (Chen et al. 2007; Herborg et al. 2007; Cudmore & Mandrak 2011; Cudmore et al. 2012; Kocovsky et al. 2012)
 - Bioenergetics modeling (Cook & Hill 2010)

- Mixed results
- Constrained by knowledge of their ability to adapt to novel environments?
Key Ecological Factors (Native)

• Typically lentic & need “large” rivers to spawn
• 80-100 km undammed river/channel (Kolar et al. 2007)
 ➢ BUT, eggs known to develop in static conditions
• Rising hydrograph/water temps ≥18 °C
 ➢ Water velocity ≥0.7 m/s (Abdusamadov 1987)
 ➢ Precipitation & discharge as proxies (e.g., Kocovsky et al. 2012)
 ➢ BUT, reproductive needs may not be as restrictive in new environments (e.g., Kara Kum Canal, Turkmenistan)
• Spring/early summer spawning
 ➢ BUT, spawning may occur multiple times throughout summer (Rasmussen 2002; Papoulias et al. 2006; Schrank & Guy 2002)
Plasticity

• Sufficient anecdotal/preliminary/recently published evidence exists to suggest that bigheaded carps more plastic in novel systems
• Spawning habitats in native range different from North America (e.g., Missouri River, Deter et al. 2012)
• Bigheaded carps likely to be able to acclimate to a wide range of conditions (“adaptable,” Kocovsky et al. 2012)
• Relatively little ecological info on bigheaded carps in North American waters
• More quantitative understanding of ecology in North American waters could improve management strategies
Objectives

• Increase understanding of bigheaded carp spawning ecology in North American freshwaters

• Conduct surveys of drifting eggs in the Wabash River, IN
 ➢ Evaluate gage height, Δ gage height, water temperature as factors
 ➢ Determine the temporal extent of spawning
 ➢ Determine upstream-most extent of spawning
Study Area

Upper Wabash River

- Eagle Marsh
Drifting Egg Sampling

- **Bongo net pulls in triplicate (333 µm, 500 µm)**
 - Weekly pulls at RM310 (Summer 2011 & 2012)
 - 3-5 min pulls; velocity added in 2012
Egg Verification

- Chapman 2006; Chapman & George 2011
- DNA
 - PCR & qPCR (Jerde et al. 2011); 2011 samples
 - qPCR D-loop region of mitochondrial DNA (Coulter et al. 2013); late 2011 & 2012
Results

- **2011**
 - Eggs detected on 19 of 25 sample dates
 - Some hydrological variability early, but largely stable from mid-July – September
 - Eggs detected @ water temps from 18.5 – 29.7 °C
 - Eggs detected as late as 01-Sep
 - DNA –confirmed eggs exclusively silver carp
Results

- **2012**
 - Very little hydrological variability
 - Eggs detected @ water temps from ≈ 18– $26 \, ^\circ C$ (to date); egg abundance increased markedly @ $25 \, ^\circ C$ despite absence of Δ gage height
 - DNA–confirmed eggs exclusively silver carp
Results

• Logistic Regression Analysis on Presence/absence
 - Presence/absence of bigheaded carp eggs at Wabash RM310 not related to change in gage height from 48-24 h prior to sampling, gage height at the time of sampling, or water temperature
Results

• Spatial Extent of Spawning (2011)
 – Conducted bongo net tows @ 5 additional sites upstream from Wabash RM310 (RM324, 340, 351, 370, & 390)
 – Limited to June due to water levels
 – Tows on 01-Jun & 02-Jun-11 yielded eggs @ 351, 370, & 390
 – Wabash River @ RM390 ≈30 m wide & drains 4,750 km²
Discussion

• Rising/changing hydrograph not essential for successful spawning
 ➢ Confirms Deter et al. (2012) & Kocovsky et al. (2012) suggestions that a rising hydrograph can be sufficient, but not required for spawning

• A wider range of rivers may be more susceptible to invasion/establishment than previously thought
Discussion

• North American bigheaded carps demonstrate protracted spawning
 - Confirms suppositions by earlier authors based on multiple size classes within YOY & variably developed eggs within ovaries of females
 - There is no question that reproductive effort is reduced over protracted period, although recruitment related to protracted events unknown
 - Analysis of quantitative measures of egg density for 2012 forthcoming
 - Also unknown are spawning habits of individuals
Discussion

- **Detection of eggs @ Wabash RM390**
 - Considerably smaller channel width & watershed area than spawning rivers in native range
 - May confirm observations by Deter et al. (2012) even though they suspected cross contamination in their samples (e.g., Lamine River (6,860 km²) and Bonne Femme Creek (464 km²) in the Missouri River basin)
 - Smaller rivers may be susceptible to invasion/establishment than originally thought
Conclusions/Implications

- Biology/ecology of bigheaded carps in native ranges do not accurately reflect the adaptability/plasticity of these species in novel systems.
- The plasticity of bigheaded carps makes them moving targets for management (plastic OR microevolution?).
- Efforts to predict invasion/establishment of these species can likely benefit from information based on existing North American populations.
- Adaptive modeling & management will likely be key for achieving goals & objectives.
Acknowledgements

Goforth Lab:
Beth Bailey, Lab Coordinator
Conor Keitzer
Jay Beugly
Sam Nutile
Caleb Rennaker
Allison Lenaerts
Colleen Rennaker
Kristen Ruhl
Preston Sipe
Tess Thoren
Megan Gunn
Kevin Leet
THANKS AGAIN!!!

Questions?

Reuben R. Goforth
Department of Forestry and Natural Resources
Purdue University
West Lafayette, Indiana 49707 USA
269-967-7620 rgoforth@purdue.edu