Performance Evaluations of Instruments Designed for Rapid, Shipboard Detection of Living Microorganisms in Ballast Water

Matthew R. First¹, Vanessa Molina², Stephanie H. Robbins-Wamsley², Scott C. Riley², Cameron S. Moser³, Mario N. Tamburri⁴, Thomas H. Johengen⁵, Heidi Purcell⁵, G. Jason Smith⁶, Earle N. Buckley⁷, and Lisa A. Drake³

¹Code 6137, Naval Research Laboratory, Washington, DC 20375
²Excet, Inc.; Springfield, VA 22150
³Code 6137, Naval Research Laboratory, Key West, FL 33041
⁴University of Maryland Center for Environmental Science; Solomons, MD 20688
⁵Cooperative Inst. For Limnology and Ecosystems Res.; Ann Arbor, MI 48109
⁶Moss Landing Marine Lab.; Moss Landing, CA 95039
⁷Buckley Environmental, Mount Pleasant, SC 29464
Background on “Compliance Tools”

Compliance Tools:

• Test ballast water as it is discharged
• Designed for rapid, shipboard analysis
• Typically report risks of exceeding the 10 mL\(^{-1}\) limit for organisms \(\geq 10\) and <50 µm
A Framework for Validation*

Step 1: Proof-of-Concept
- Pilot study
- Subject matter workshops

Step 2: Verification and Validation
- Rigorous, independent testing
- Tests with challenging conditions

Step 3: Feasibility and Selection
Considerations include:
- Functional requirements
- Physical size and safety
- Cost and ease-of-use

2015 → 2016: Testing of compliance tools based upon variable fluorescence fluorometry

*Drake et al. (2014) Marine Pollution Bulletin 86: 122-128
The **Environmental Technology Verification Protocol (ETV)*** stipulates an approach based upon epifluorescence microscopy.

Step 1: Labeling

Two fluorescent probes are introduced into the sample.

Step 2: Manual microscopy

Visual counts of fluorescing or moving (i.e., living) organisms.

U.S. Environmental Protection Agency, 2010; the ETV is the U.S. protocol for land-based verification testing of ballast water management systems
Laboratory and Field Trials

Laboratory trials:
Tested a range of concentrations of one of two cultured microalgae

Field trials:
Examined ambient samples at contrasting locations

*Image: Gert Hansen
SCCAP K-1137
http://media.nordicmicroalgae.org

Target concentrations:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>0 mL(^{-1})</th>
<th>5 mL(^{-1})</th>
<th>10 mL(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 mL(^{-1})</td>
<td>50 mL(^{-1})</td>
<td>100 mL(^{-1})</td>
</tr>
</tbody>
</table>

Prorocentrum micans Tetraselmis marina
Fluorometry-based compliance tools

- **YSI Ballast Monitor**
 - Xylem
 - 86 x 103 x 30 cm
 - 100 kg

- **10Cells**
 - BBE Moldaenke
 - 30 x 34 x 15 cm
 - 5 kg

- **BW680**
 - Hach
 - 6 x 14 x 5 cm
 - 0.3 kg

- **Ballast-Check 2**
 - Turner Designs
 - 9 x 18 x 5 cm
 - 0.4 kg

- **FastBallast**
 - Chelsea Tech. Group
 - 20 x 24 x 5 cm
 - 3 kg
Testing and Analysis: 2015-2016

Round 1: June – September, 2015
Round 2: March – July, 2016

Sampling ambient organisms from seawater in Key West, FL
Evaluation Criteria

Linearity
• Do measurements of abundance change proportionately with cell concentrations?

Precision
• Are repeated measurements of the same sample in agreement?

Accuracy
• Does the instrument’s assessment (i.e., above or below the discharge standard) agree with microscope counts?
Results: Linearity (All trials)

R² Values: Coefficient of Determination
Microscope counts vs. compliance tool concentrations

<table>
<thead>
<tr>
<th>Tool</th>
<th>Laboratory Trials</th>
<th>Field Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T. marina</td>
<td>P. micans</td>
</tr>
<tr>
<td>Ballast-Check 2 (2015)</td>
<td>0.46</td>
<td>0.98</td>
</tr>
<tr>
<td>10Cells</td>
<td>0.85</td>
<td>0.84</td>
</tr>
<tr>
<td>YSI Ballast Monitor</td>
<td>0.87</td>
<td>0.94</td>
</tr>
<tr>
<td>Ballast-Check 2 (2016)</td>
<td>0.33</td>
<td>0.90</td>
</tr>
<tr>
<td>FastBallast</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>BW680</td>
<td>0.57</td>
<td>0.92</td>
</tr>
</tbody>
</table>

R² Values: 0 to 1

Legend:

- R² ≥0.90
- R² ≥0.75
- R² <0.50

Detailed reports available at: www.act-us.info
Results: Precision (Laboratory trials)

CV: Coefficient of Variation

<table>
<thead>
<tr>
<th>Tool</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Median</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>BallastCheck2 (2015)</td>
<td>22%</td>
<td>230%</td>
<td>77%</td>
<td>59%</td>
<td>21</td>
</tr>
<tr>
<td>10Cells</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>YSI Ballast Monitor</td>
<td>0.2%</td>
<td>24%</td>
<td>4.7%</td>
<td>3.4%</td>
<td>36</td>
</tr>
<tr>
<td>BallastCheck2 (2016)</td>
<td>1%</td>
<td>99%</td>
<td>33%</td>
<td>29%</td>
<td>14</td>
</tr>
<tr>
<td>FastBallast</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>BW680</td>
<td>2%</td>
<td>105%</td>
<td>30%</td>
<td>16%</td>
<td>23</td>
</tr>
</tbody>
</table>

CV (%): Standard deviation adjusted to the mean

Only reported for mean values >10 units

Legend:

- **CV <25%**
- **CV ≥25%**
Results: Precision (Field trials)

CV: Coefficient of Variation

<table>
<thead>
<tr>
<th>Tool</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Median</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>BallastCheck2 (2015)</td>
<td>9%</td>
<td>61%</td>
<td>28%</td>
<td>26%</td>
<td>12</td>
</tr>
<tr>
<td>10Cells</td>
<td>6%</td>
<td>52%</td>
<td>24%</td>
<td>22%</td>
<td>20</td>
</tr>
<tr>
<td>YSI Ballast Monitor</td>
<td>0.1%</td>
<td>63%</td>
<td>13%</td>
<td>4.7%</td>
<td>36</td>
</tr>
<tr>
<td>BallastCheck2 (2016)</td>
<td>25%</td>
<td>113%</td>
<td>63%</td>
<td>53%</td>
<td>15</td>
</tr>
<tr>
<td>FastBallast</td>
<td>9%</td>
<td>42%</td>
<td>21%</td>
<td>18%</td>
<td>22</td>
</tr>
<tr>
<td>BW680</td>
<td>6%</td>
<td>101%</td>
<td>25%</td>
<td>17%</td>
<td>26</td>
</tr>
</tbody>
</table>

CV(%): Standard deviation adjusted to the mean

Only reported for mean values >10 units

Legend:

- $CV < 25\%$
- $CV \geq 25\%$
Results: Accuracy (Laboratory trials)

Probability of measuring an exceedance at 30 mL⁻¹

<table>
<thead>
<tr>
<th>Compliance Tool</th>
<th>Laboratory Trials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T. marina</td>
</tr>
<tr>
<td>Ballast-Check 2 (2015)</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>10Cells</td>
<td>N/A: Insufficient readings exceeding 10 mL⁻¹</td>
<td></td>
</tr>
<tr>
<td>YSI Ballast Monitor</td>
<td>N/A: Pass/Fail not reported</td>
<td></td>
</tr>
<tr>
<td>Ballast-Check 2 (2016)</td>
<td>N/A²</td>
<td>0.99</td>
</tr>
<tr>
<td>FastBallast</td>
<td>N/A: Instrument malfunction</td>
<td></td>
</tr>
<tr>
<td>BW680</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Legend:
- Probability ≥0.90

30 mL⁻¹: 3x the exceedance of the discharge standard
Results: Accuracy (Field trials)

Probability of measuring an exceedance at 30 mL\(^{-1}\)

<table>
<thead>
<tr>
<th>Compliance Tool</th>
<th>Field Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NRL</td>
</tr>
<tr>
<td>Ballast-Check 2 (2015)</td>
<td>0.97</td>
</tr>
<tr>
<td>10Cells</td>
<td>0.99</td>
</tr>
<tr>
<td>YSI Ballast Monitor</td>
<td>N/A: Pass/Fail not reported</td>
</tr>
<tr>
<td>Ballast-Check 2 (2016)</td>
<td>1.00</td>
</tr>
<tr>
<td>FastBallast</td>
<td>N/A: Insignificant regression</td>
</tr>
<tr>
<td>BW680</td>
<td>1.00</td>
</tr>
</tbody>
</table>

30 mL\(^{-1}\): 3x an exceedance of the discharge standard

Legend:
- Probability ≥0.90
Tests provided challenging conditions, and in general, the compliance tools performed well for samples of:

- Monocultures of relatively “large” microalgae (i.e., *P. micans*)
- Oligotrophic waters (i.e., Florida Keys)

In field trials, compliance tools had a high probability (~99%) of detecting an exceedance when concentrations were ≥30 mL⁻¹:

- Therefore, probabilities of detecting gross exceedances (e.g., ≥100 mL⁻¹) would be very high (~100%)
Acknowledgements

This work was funded by the:

US Coast Guard

Research and Development Center (RDC)
(Agreement HSCGFT-14-XE51D05) and the

Maritime Administration (MARAD)

We appreciate the advice and programmatic support from

Gail Roderick (RDC), Danielle Elam (RDC), and

Carolyn Junemann (MARAD)
Acknowledgements: Participants

Additional Test Participants
Dr. Katherine ‘Jenny’ Carney
Smithsonian Environmental Research Center (SERC)
Ms. Lisa Allinger and Dr. Euan Reavie
University of Minnesota-Duluth; Great Ships Initiative (GSI)

Technical Advisory Committee (Fluorometry)
Dr. Ryan Albert
U.S. Environmental Protection Agency
Dr. Richard Everett
U.S. Coast Guard
Dr. Carolyn Junemann
Maritime Administration
Dr. Sam Laney
Woods Hole Oceanographic Inst.
Dr. Beth Stauffer
University of Louisiana Lafayette
Supplemental Slides
Testing and Analysis: 2015-2016

Round 1: June – September, 2015
Round 2: March – July, 2016

Sampling ambient organisms from seawater in Key West, FL
Logistical Regression compares the relationship between:
- A continuous independent variable (cell concentration)
- A binary dependent variable (Pass/Fail)

Probability (of measuring an exceedance)

![Graph showing cell concentration vs. probability of exceedance with high and low predictability regions marked.](Image)

- High predictability
- Low predictability
Results: Linearity (Laboratory trials)

R² Values: Coefficient of Determination
Microscope counts vs. compliance tool concentrations

<table>
<thead>
<tr>
<th>Tool</th>
<th>Laboratory Trials</th>
<th>T. marina</th>
<th>P. micans</th>
<th>Both organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>BallastCheck2 (2015)</td>
<td></td>
<td>0.46</td>
<td>0.98</td>
<td>0.90</td>
</tr>
<tr>
<td>10Cells</td>
<td></td>
<td>0.85</td>
<td>0.84</td>
<td>0.68</td>
</tr>
<tr>
<td>YSI Ballast Monitor</td>
<td></td>
<td>0.87</td>
<td>0.94</td>
<td>0.91</td>
</tr>
<tr>
<td>BallastCheck2 (2016)</td>
<td></td>
<td>0.33</td>
<td>0.90</td>
<td>0.82</td>
</tr>
<tr>
<td>FastBallast</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>BW680</td>
<td></td>
<td>0.57</td>
<td>0.92</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Legend:
- $R^2 \geq 0.90$
- $R^2 \geq 0.75$
- $R^2 < 0.50$

R² Values:
0 (no linear relationship) to 1 (strong linear relationship)
Results: Linearity (Field trials)

R² Values: Coefficient of Determination

Microscope counts vs. compliance tool concentrations

<table>
<thead>
<tr>
<th>Tool</th>
<th>Field Trial Locations</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NRL</td>
<td>GSI</td>
<td>SERC</td>
<td>All Sites</td>
</tr>
<tr>
<td>BallastCheck2 (2015)</td>
<td>0.63</td>
<td>0.64</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>10Cells</td>
<td>0.61</td>
<td>0.69</td>
<td>0.68</td>
<td>0.48</td>
</tr>
<tr>
<td>YSI Ballast Monitor</td>
<td>0.72</td>
<td>0.66</td>
<td>0.01</td>
<td>0.15</td>
</tr>
<tr>
<td>BallastCheck2 (2016)</td>
<td>0.73</td>
<td>0.46</td>
<td>0.39</td>
<td>0.36</td>
</tr>
<tr>
<td>FastBallast</td>
<td>0.13</td>
<td>0.75</td>
<td>0.71</td>
<td>0.37</td>
</tr>
<tr>
<td>BW680</td>
<td>0.66</td>
<td>0.61</td>
<td>0.82</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Legend:
- R² ≥0.90
- R² ≥0.75
- R² <0.50

R² Values:
0 (no linear relationship) to 1 (strong linear relationship)